4,999 research outputs found

    Information on the structure of the a1 from tau decay

    Full text link
    The decay τ→πππν\tau\to \pi\pi\pi\nu is analysed using different methods to account for the resonance structure, which is usually ascribed to the a1. One scenario is based on the recently developed techniques to generate axial-vector resonances dynamically, whereas in a second calculation the a1 is introduced as an explicit resonance. We investigate the influence of different assumptions on the result. In the molecule scenario the spectral function is described surprisingly well by adjusting only one free parameter. This result can be systematically improved by adding higher order corrections to the iterated Weinberg-Tomozawa interaction. Treating the a1 as an explicit resonance on the other hand leads to peculiar properties

    On Kernel Formulas and Dispersionless Hirota Equations

    Full text link
    We rederive dispersionless Hirota equations of the dispersionless Toda hierarchy from the method of kernel formula provided by Carroll and Kodama. We then apply the method to derive dispersionless Hirota equations of the extended dispersionless BKP(EdBKP) hierarchy proposed by Takasaki. Moreover, we verify associativity equations (WDVV equations) in the EdBKP hierarchy from dispersionless Hirota equations and give a realization of associative algebra with structure constants expressed in terms of residue formula.Comment: 30 pages, minor corrections, references adde

    Quantum particle on hyperboloid

    Full text link
    We present quantization of particle dynamics on one-sheet hyperboloid embedded in three dimensional Minkowski space. Taking account of all global symmetries enables unique quantization. Making use of topology of canonical variables not only simplifies calculations but also gives proper framework for analysis.Comment: 7 pages, no figures, revtex

    Relativistically invariant quantum information

    Get PDF
    We show that quantum information can be encoded into entangled states of multiple indistinguishable particles in such a way that any inertial observer can prepare, manipulate, or measure the encoded state independent of their Lorentz reference frame. Such relativistically invariant quantum information is free of the difficulties associated with encoding into spin or other degrees of freedom in a relativistic context.Comment: 5 pages, published versio

    Relativistically covariant state-dependent cloning of photons

    Full text link
    The influence of the relativistic covariance requirement on the optimality of the symmetric state-dependent 1 -> 2 cloning machine is studied. Namely, given a photonic qubit whose basis is formed from the momentum-helicity eigenstates, the change to the optimal cloning fidelity is calculated taking into account the Lorentz covariance unitarily represented by Wigner's little group. To pinpoint some of the interesting results, we found states for which the optimal fidelity of the cloning process drops to 2/3 which corresponds to the fidelity of the optimal classical cloner. Also, an implication for the security of the BB84 protocol is analyzed.Comment: corrected, rewritten and accepted in PR

    Suppression of dynamic stall with a leading-edge slat on a VR-7 airfoil

    Get PDF
    The VR-7 airfoil was experimentally studied with and without a leading-edge slat at fixed angles of attack from 0 deg to 30 deg at Re = 200,000 and for unsteady pitching motions described by alpha equals alpha(sub m) + 10 deg(sin(wt)). The models were two dimensional, and the test was performed in a water tunnel at Ames Research Center. The unsteady conditions ranged over Re equals 100,000 to 250,000, k equals 0.001 to 0.2, and alpha(sub m) = 10 deg to 20 deg. Unsteady lift, drag, and pitching-moment measurements were obtained along with fluorescent-dye flow visualizations. The addition of the slat was found to delay the static-drag and static-moment stall by about 5 degrees and to eliminate completely the development of a dynamic-stall vortex during unsteady motions that reached angles as high as 25 degrees. In all of the unsteady cases studied, the slat caused a significant reduction in the force and moment hysteresis amplitudes. The reduced frequency was found to have the greatest effect on the results, whereas the Reynolds number had little effect on the behavior of either the basic or the slatted airfoil. The slat caused a slight drag penalty at low angles of attack, but generally increased the lift/drag ratio when averaged over the full cycle of oscillation

    Airfoil interaction with impinging vortex

    Get PDF
    The tip of a finite-span airfoil was used to generate a streamwise vortical flow, the strength of which could be varied by changing the incidence of the airfoil. The vortex that was generated traveled downstream and interacted with a second airfoil on which measurements of lift, drag, and pitching moment were made. The flow field, including the vortex core, was visualized in order to study the structural alterations to the vortex resulting from various levels of encounter with the downstream airfoil. These observations were also used to evaluate the accuracy of a theoretical model
    • …
    corecore